Roll	No.	:	
------	-----	---	--

Total No. of Questions: 9]

[Total No. of Printed Pages: 6

BCA-1005

BCA (Semester-I) (NEP) Examination, 2024-25

(Major)

MATHEMATICS-I

Time: 2 Hours]

[Maximum Marks: 75]

Note: 1. Attempt questions from all sections as directed.

- 2. The candidates are required to answer only in serial order. If there are many parts of a question, answer them in continuation.
- 3. "B" copy will not be provided.

Section-A

Short Answer Type Questions

Note: All questions are **compulsory**. Each question carries 5 marks. $[9 \times 5 = 45]$

BCA-1005/6380

(1)

Turn Over

- Write the cofactors of each elements of the determinant $\begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix}$.
 - State Lagrange's mean value theorem and find (b) the value of c for f(x) = x(x-1)(x-2) in interval $\left[0,\frac{1}{2}\right]$.
 - (c) If $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ prove that $(2I+3E)^3 = 8I + 36E$.
 - Evaluate $\lim_{x\to 3} \frac{x^2-5^2}{x-5}$.
 - Find the angle between $\vec{a} = 2i + 2j k$ and (e) $\vec{b} = 3j + 2k$.
 - (f) If $y = (\log x)^3$, then find $\frac{dy}{dx}$.

- Evaluate indefinite integral $\int \frac{1}{\sqrt{9+r^2}} dx$. (g)
- If A, B are square matrices, such that $A^2 = A$ (h) and $B^2 = B$ show that $(AB)^2 = AB$, if A, B commute.
- Find the volume of parallelepiped with adjacent (i) vertices vectors

$$\vec{a} = 3i + 2j - k, b = i + j - k, c = 2i - k$$

Section-B

Long Answer Type Questions

Note: Attempt any one question from the following. Each [15×1=15] question carries 15 marks.

- (a) Find the differential coefficient of $\frac{e^x}{e^x + 1}$.

- (c) Discuss the continuity of the greatest integer function f(x) = [x] at $x = \frac{1}{2}$.
- 3. (a) For what values of x and y the matrices A and B are equal:

$$A = \begin{bmatrix} 2x+1 & 3y \\ 0 & y^2 - 5y \end{bmatrix} \text{ and } B = \begin{bmatrix} x+3 & y^2 + 2 \\ 0 & -6 \end{bmatrix}$$

- (b) Find Maclaurin's series expansion of function $e^{\sin x}$ about the point x = 0.
- (c) Prove that the maximum value of $f(x) = \sin x + \cos x$ is $\sqrt{2}$.
- 4. (a) Write statement of Cayley-Hamilton theorem and find characteristic equation of matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}.$$

(b) Verify Cayley - Hamilton theorem for the

matrix
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$
.

(c) Solve the equation
$$\begin{vmatrix} 3x-8 & 3 & 3 \\ 3 & 3x-8 & 3 \\ 3 & 3 & 3x-8 \end{vmatrix} = 0$$
.

- 5. (a) Find the derivative of $\frac{1}{(x+a)(x+b)(x+c)}$.
 - (b) Find the inverse of the matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & 2 \end{bmatrix}$ using adjoint method.
 - (c) Prove that $\lim_{x \to 0} (1 + px)^{1/x} = e^p$.

Section-C

Long Answer Type Questions

Note: Attempt any one question from the following. Each question carries 15 marks. $[15 \times 1=15]$

- 6. (a) If $f(x) = x^3 + 8x^2 + 15x 24$, calculate the value of $f\left(\frac{11}{10}\right)$ by the application of Taylor's series.
 - (b) Evaluate indefinite integral

- 7. (a) Find the unit vector perpendicular to both the vectors $\vec{a} = 3\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} 2\hat{j} + \hat{k}$.
 - (b) Evaluate integral by parts $x tan^{-1} x dx$
- 8. (a) If $\cos y = x \cos(b+y)$, find $\frac{dy}{dx}$.
 - (b) Evaluate integral $\int \frac{1}{x^6 + x^4} dx$.
- 9. (a) Find the work done by a force of magnitude 3 units acting in the direction 3i-2j+6k acting on a particle, which is displaced from the point A(2,-3,-1) to point B(4,3,1).
 - (b) Verify Rolle's Theorem for the function $f(x) = 2x^3 + x^2 4x 2.$

---- X ----